Astronomen entdecken riesigen Magnetar Wie viel Masse braucht man für ein Schwarzes Loch?

Düsseldorf (RPO). Astronomen konnten jetzt erstmals nachweisen, dass ein Magnetar – eine seltene Art von Neutronenstern – aus einem Stern mit mindestens der vierzigfachen Masse der Sonne entstanden ist. Doch derart massereiche Sterne sollten nicht zu einem Magnetar werden, sondern zu einem Schwarzen Loch. Das wirft die fundamentale Frage auf, wie massereich ein Stern tatsächlich sein muss, um sich am Ende seines Lebens in ein Schwarzes Loch zu verwandeln.

Spektakuläre Fotos: Schwarze Löcher, ferne Galaxien, sterbende Sonnen
413 Bilder

Schwarze Löcher, ferne Galaxien, explodierende Sonnen

413 Bilder
Foto: ap

Düsseldorf (RPO). Astronomen konnten jetzt erstmals nachweisen, dass ein Magnetar — eine seltene Art von Neutronenstern — aus einem Stern mit mindestens der vierzigfachen Masse der Sonne entstanden ist. Doch derart massereiche Sterne sollten nicht zu einem Magnetar werden, sondern zu einem Schwarzen Loch. Das wirft die fundamentale Frage auf, wie massereich ein Stern tatsächlich sein muss, um sich am Ende seines Lebens in ein Schwarzes Loch zu verwandeln.

Zu ihren Schlussfolgerungen über den Magnetar kamen die Astronomen nach einer eingehenden Untersuchung des ungewöhnlichen Sternhaufens Westerlund 1, in dem sich der Magnetar befindet. Westerlund 1 liegt in einer Entfernung von 16.000 Lichtjahren im Sternbild Ara (der Altar) am Südhimmel.

Von früheren Untersuchungen her kannten die Wissenschaftler Westerlund 1 als den uns nächsten "Supersternhaufen”. Er enthält hunderte sehr massereiche Sterne, von denen einige bei einer Größe von etwa 2000 Sonnendurchmessern (das entspricht etwa der Größe der Umlaufbahn des Planeten Saturn) fast eine Million mal so hell leuchten wie die Sonne.

Hunderte Vollmonde am Nachthimmel

"Befände sich die Sonne im Herzen dieses bemerkenswerten Sternhaufens, wäre der Nachthimmel auf der Erde mit hunderten von Sternen übersät, die so hell wären wie der Vollmond”, erklärt Ben Ritchie, der Erstautor des Fachartikels, in dem die Ergebnisse der Untersuchungen beschrieben werden.

Ein Magnetar ist ein Neutronenstern mit einem unvorstellbar starken Magnetfeld — rund eine Billiarde mal stärker als das der Erde. Das Magnetfeld entsteht zur gleichen Zeit wie der Neutronenstern selbst, also dann, wenn der Vorläuferstern am Ende seines Lebens als Supernova explodiert. Der Sternhaufen Westerlund 1 enthält einen der wenigen Magnetare, die die Astronomen in unserer Heimatgalaxie, der Milchstraße, kennen.

Erst die Zugehörigkeit des Magnetars zum Sternhaufen ermöglicht die Abschätzung, dass sein Vorgängerstern mindestens 40 Sonnenmassen gehabt haben muss. Da die Sterne in Westerlund 1 alle gleich alt sind, muss der Stern, der als Supernova explodierte und den Magnetar als Überbleibsel hinterließ, eine kürzere Lebensspanne gehabt haben als die heute in dem Sternhaufen noch existierenden Sterne.

Riesiger Masseverlust vor Explosion

Das Astronomenteam feststellen können, dass der Vorläuferstern des Magnetars mindestens vierzigmal so massereich gewesen sein muss wie die Sonne. Damit haben sie erstmals gezeigt, dass sich Magnetare aus Sternen bilden können, die so massereich sind, dass man eigentlich erwarten würde, dass sie am Ende ihres Lebens zu einem Schwarzen Loch werden. Zuvor hatte man angenommen, dass Sterne mit anfänglich zwischen 10 und 25 Sonnenmassen Neutronensterne bilden würden und Sterne mit mehr als 25 Sonnenmassen Schwarze Löcher.

"Diese Sterne müssen auf irgendeine Weise mehr als neun Zehntel ihrer Masse verlieren, bevor sie als Supernova explodieren, sonst würden sie als Schwarzes Loch enden", erklärt Co-Autor Ignacio Negueruela. "So große Massenverlustraten vor der Explosion stellen für die gängigen Modelle der Sternentwicklung eine große Herausforderung dar."

"Es stellt sich daher die schwierige Frage, wie viel Masse ein Stern denn überhaupt haben muss, um schließlich zu einem Schwarzen Loch zusammenzustürzen, wenn dies nicht einmal Sternen mit mehr als 40 Sonnenmassen gelingt", ergänzt Co-Autor Norbert Langer.

Der von den Astronomen bevorzugte Entstehungmechanismus für den Magnetar geht davon aus, dass der Vorläufersterns des Magnetars zusammen mit einem Begleitstern entstanden ist. Im Laufe ihrer gemeinsamen Entwicklung kam es zur Wechselwirkung zwischen den Sternen: Dabei wurde Energie aus der Umlaufbewegung der Sterne dazu aufgewendet, die große überschüssige Masse des Vorläufersterns wegzuschleudern.

Zwar hat man bislang keinen solchen Begleiter gefunden, was aber darin begründet sein könnte, dass die Supernovaexplosion, bei der sich der Magnetar gebildet hat, das Doppelsternsystem zerstört und beide Sterne mit hoher Geschwindiglkeit aus dem Sternhaufen geschleudert hat.

"Wenn das der Fall ist, könnten Doppelsternsysteme eine entscheidende Rolle in der Sternentwicklung spielen, indem sie den Massenverlust beeinflussen. Für die Schwergewichte unter den Sternen wäre es die ultimative kosmische Diät, bei der sie mehr als 95% ihrer Anfangsmasse verlieren würden”, schließt Co-Autor und Teamleiter Simon Clark.

(csr/top)
Meistgelesen
Neueste Artikel
Zum Thema
Aus dem Ressort